

Fourth Semester B.E. Degree Examination, June 2012

Fundamentals of HDL

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

a. Describe verilog data types with an example.

(08 Marks)

b. For the following VHDL code, determine legal and illegal operations between data of different types.

```
SIGNAL a: BIT;
```

SIGNAL b : BIT_VECTOR (7 DOWNTO 0);

SIGNAL c : STD_LOGIC ;

SIGNAL d: STD_LOGIC_VECTOR (7 DOWN TO 0);

SIGNAL e: INTEGER RANGE 0 TO 255;

a < = b(5);

b(0) < = a;

c < = d(5);

d(0) < = c;

a < = c:

b < = d;

e < = b:

e < = d:

(05 Marks)

c. Find the value of the expressions X1...X8, for the following VHDL signal declarations.

```
SIGNAL a : BIT := '1';
```

SIGNAL b : BIT_VECTOR (3 DOWNTO 0) : = "1100";

SIGNAL c : BIT VECTOR (3 DOWNTO 0) := "0010";

SIGNAL d: BIT VECTOR (7 DOWNTO 0);

- i) X1 < = a and c;
- v) X5 < = b sll 2;
- ii) X2 < = c and b:
- vi) X6 < = b sla 2;
- iii) X3 < = b XOR c;

- vii) X7 < = b rol 2;
- iv) X4 < = a NOR b(3);
- viii) X 8 < = a AND NOT b(0) AND NOT c(1); (07 Marks)
- 2 Write a data – flow description in both VHDL and verilog of a system that has three 1 – bit input, a(1), a(2) and a(3); and one 1 – bit output b. The least significant bit is a(1); and b is I only when $(a(3) \ a(2) \ a(1) = 1, 3, 6, \text{ or } 7 \text{ (all in decimal)}, \text{ otherwise b is } 0.$ Derive a minimized Boolean function of the system and write the data flow description.
 - Write VHDL code using a data flow description of a full adder with enable. If the enable is low (0), the sum and carry are zero; otherwise, the sum and carry are the usual output of the adder. Draw the truth table of this adder, and derive the simplified Boolean function.

(08 Marks)

- a. Develop a VHDL model for a pipelined circuit that computes the average of corresponding values in three streams of input values, a, b and c. The pipeline consists of three stages:
 The first stage sums values of a and b and saves the value of c; the second stage adds on the saved value of c, and third stage divides by three. The inputs and output are all signed fixed point numbers indexed from 5 down to 8.
 - b. Explain the structure of the HDL behavioral description, with an example. (08 Marks)
- **4** a. Write a VHDL code, using structural description of a 3-bit comparator using adders.

(10 Marks)

- b. Develop a verilog model of a switch debouncer for a push button that uses a debounce interval of 10 ms. Assume the system clock frequency is 50 MHz. (06 Marks)
- c. Write a verilog code of a pulse triggered master-slave JK flip flop, using structural description. (04 Marks)

PART – B

- 5 a. Explain how functions are described in VHDL and verilog. (06 Marks)
 - b. Develop VHDL code for signed vector multiplication, using procedure and tasks. (14 Marks)
- 6 a. Describe procedure for invoking a VHDL entity from a verilog module and a verilog module from a VHDL module. (08 Marks)
 - b. Develop mixed-language description of a 9-bit adder. (08 Marks)
 - c. Write a note on VHDL packages.

(04 Marks)

7 a. List limitations of mixed-language description.

(04 Marks)

b. Write mixed – language description of a simple RC filter.

(12 Marks)

c. Describe instantiating CASEX in VHDL.

(04 Marks)

8 a. With the help of flow chart. Explain synthesis steps in HDL.

- (08 Marks)
- b. With an example, explain how mapping of procedure and task takes place in VHDL and verilog synthesis respectively. (12 Marks)

* * * * *